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Methods of digital simulation of the links with irrational and transcendental transfer 
functions are studied. The simulation errors are presented for different values of the 
variable parameters. 

The problem of constructing thermal identification measurement-information systems is 
linked with the need to construct models of links with irrational i/(b~pp) and transcendental 
exp (--k~p) transfer functions [i]. These links are described by partia ! differential equa- 
tions, so that active, distributed RC structures or their discrete equivalents in a definite 
frequency range are employed for their analog simulation [2]. Because of the large time con- 
stant of the thermal processes, however, in order to develop analog models it is necessary to 
have RC structures with large time constants, which cannot always be realized in practice with 
the required accuracy. The striving to increase the accuracy of the simulation led to the 
development of digital models of thermal links. They can be constructed based on a digital 
computer or a specialized digital device. For the identify criterion it is convenient to 
chosse the magnitude of the deviation of the output signals of the digital model and of the 
thermal link for the same inputs. The digital model operates with a digital signal. In order 
to represent a continuous thermal process in a digital form, it is necessary to carry out the 
discretization operation in time and quantization by levels [3]. For a correctly chosen dis- 
cretization frequency there is no loss of information about the continuous signal and the sign~l 
can be reconstructed exactly from the discrete measurements. The discretization and recon- 
struction operations are mutually inverse, if the continuous signal has a bounded spectrum FM 
and the discretization frequency F e satisfies Kotel'nikov's theorem [4] 

F,~2FM. (1) 

To increase the accuracy of the representation of the continuous signal the discretization 
frequency is chosen from more rigid conditions [3] 

F ~ ( 5 -  i0) FM. (2) 

The quantization operation is nonlinear and introduces an unavoidable error into the repre- 
sentation of the signal. However, when a large enough number of quantization levels is 
chosen the rms value of the quantizalion noise is small ~=6@2/12 and the analog signal can 
be replaced by the digital signal. The digital model is described by a discrete transfer W(z). 
In order to form the discrete equivalent of a continuous transfer function W(p) it is necessary 
to know its Z transform W(z)=Z{W(pJ}and it must be represented in the form of a recurrence 
difference equation, which forms the basis for the construction of the algorithm for processing 
the digital signal [3]. The described method for determining the discrete equivalent is pre- 
dicated on the assumption that the continuous transfer function is described by a rational 
expression. Thermal links, however, are characterized by irrational i/(b/p) and transcen- 
dental exp(--k~p) continuous transfer functions, which cannot be described by rational ex- 
pressions with the required accuracy. Therefore in order to construct a digital model of a 
thermal link we shall employ a discrete convolution. In this case the response of the digital 
model to an arbitrary input in the time domain is defined as 

6 out (nTe) = 2 6in (lTe) h[(n - -  l) Te] -- ~ 6 in [(n - -  l) Te] ~ (lTe). 
l=0  l~0  
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Fig. i. Structural layout of the digital 
model based on a special convolution processor: 
I) analog to digital converter; 2) special con- 
volution processor; 3) weighting function work- 
ing memory; 4) digital-to-analog converter. 
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Fig. 2. Structural diagram of the formation of 
the temperature field at the center of a round 
heat source. 

In this case the convolution in the form of a sum is understood to be not the approximation 
to the convolution integral, but rather as a means for determining the n-th value of the 
output sequence of the digital model. Employing for the impulsive characteristic H([Te) 
the weighting function of the thermal link, represented in digital form, it is possible to 
realize the equivalent digital model. 

A digital computer or a special convolution processor is employed in order to implement the 
digital model. A structural diagram of the digital model based on a special convolution 
processor is shown in Fig. i. The weighting function of the thermal link is stored in digital 
form in the working memory (WM) of the weighting function. The special processor provides the 
convolution of an arbitrary input signal and a weighting function, and as a result a digital 
signal whose value is identical to the value of the output signal of a continuous thermal 
link at the time t = nTe (for identical inputs) is formed at the output. The output sequence 
can be formed with the use of the algorithm for sectioned convolution. 

We shall examine as an example the structural characteristics of the digital model of a 
link with the transfer function exp(--k~p), employed in the system for identifying the coeffici, 
ens of thermal diffusivity a and thermal activity b without destroying the integrity of the 
material under study. The system is constructed with the help of the structural scheme for 
heat transport in a semihounded body, whose surface is exposed to a bounded circul&r heat 
source with radius r0 and specific power q(t) (Fig. 2) [5]. The mathematical model of the 
body under study is represented by links with the transfer function l/(h~p) and exp(--k/pp). 
The numerical values of the coefficient of thermal diffusivity a, for most of the nonmetallic 
materials studied i.e., in the following intervals: a = (0.5-i0).i0 -7 m2/sec. Taking into ac- 
count the radius of the circular heat source the range of possible values k = (6.7-67) sec I/2. 
The weighting function h(t) of the link exp(--k~pp) is given by 

k 
h (t) --  2 ] / _ ~  exp (--k2/4t). 

For t < 0 h(t) - 0, so that the Fourier transform of the weighting function corresponds to its 
Lapl&ce transform at P = j~ 
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TABLE i. Values of the Output Signals with an 

Input i/p 

Timer ,  ] Output signal I " 
see ~ digital model I thermal link L Error 6, % 

9 
10 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

0,5795.10-a 
0,5950.10-2 
0,1764.10-1 
0,3399.10 -1 
0,5304.10-1 
0,7333.10 -1 
0,9393.10-i 
0,I143 

0,3489.10 -~7 
0,1110.I0-26 
0,1301.10-17 
0,3222.10-1n 
0,1294.10-12 
0,6894.10-9 
0,1172.10-7 
0,9796.10-7 
0,5113.10-6 
0,1921.10 -~ 

k=6,7 
0,8082.10-a 
0,6233.10-2 
0,1784.10-1 
0,3411.10-1 
0,5310.10-1 
0,7335.10-1 
0,9393.10-1 
0,1143 

k=67 
0,3721.10-55 
0,1662.10-26 
0,1418.10-17 
O, 3321.10-1a 
O, 1313.10 -lo 
O, 6950.10 - o 
O, 1178.10- 7 
0,9830.10-7 
0,5125.10-~ 
0,1924.10-s 

28 
4,5 
1,1 
0,35 
O,1 
0,03 
0,00 

'0,00 

8,20 
2,99 
1,43 
0,81 
0,5 
0,34 
0,34 
0,17 

TABLE 2. Values of the Output Signals with 
the Input ;/(p]/p) 
Time t, [ Output signal Error 
see ] digital model I thermal link 6, % 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

0,4624.10-a 
0,5086.10-2 
0,1778.10-1 
0,4001.10-1 
0,7137.10-1 
O,1107 
0,1568 
0,2084 
0,2645 
0,3243 
0,3869 
0,4518 
0,5186 
0,5869 

0,2185.10 -6 
0,1273.10-~ 
0,5278.10-~ 
0,1706.10 -4 
0,4575.10-a 
0,I062.10-a 
0,2198.10-a 
0,4154.10-a 
0,7283.10-a 
0,1200.10-2 
0,1879.10-2 
0,2816.10-2 
0,4063.10-~ 

k=6,7 

0,4198. lO-a 
0,4625- 10 -2 
0,1618.10-1 
0,3884.10-I 
0,7006.10-~ 
O, 1094 
O, 1554 
0,2071 
0,2632 
O, 3230 
0,3857 
0,4507 
0,5175 
0,5858 

k=67 
0,2033. lO -6 
O, 1213.10-~ 
0,5103. lO -5 
O, 1666- lO- 1 
0,4496. lO -4 
O, 1043- 10 -a 
0,2177. lO-a 
0,4123. lO-a 
0,7242.10-a 
0,1195.10 -3 
0,1873.10-2 
0,2807. lO -2 
0,4054- 10-2 

10 
9,98 
5,23 
3,00 
1,88 
1,26 
0,89 
0,66 
0,5 
0,35 
0,31 
0,25 
0,21 
0,17 

7,51 
4,98 
3,43 
2,43 
1,76 
1,30 
0,98 
0,75 
0,57 
0,45 
0,35 
0,28 
O, 22 

H (/co) = [exp (--k Vp)]p=fm = exp (--k -1/]~), 

I/-/(/o,)1 = exp ( k ]/j~) 

The weighting function h(t) has a continuous unbounded spectrum. In order to obtain a cor- 
rect discretization of h(t) we shall limit the width of the spectrum by the value ~M and we 
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Fig. 3. Graphs of the output signals of the thermal link and 
digital model for inputs i/(p@ (a) and i/p (b). 

shall determine the error introduced by dropping the high-frequency components as follows: 

8 b ~-~ 
H (ion) -- H (io) u) 

IH (/m)l 
�9 100% = exp ( - - ~ / ~ u  ) [1 -I- ]/2--~~M l" 100%. 

For k ~ 6.7 and mM = i Hz the error does not exceed 0.1%. The effect of the filtering fre- 
quencies on the weighting function can be evaluated with the help of the Parseval relation 
[6].  

i ; ih(t)f'dt = IH(/o~)l~d~o. 
- - o o  ~ o o  

We~:shall determine the discretization frequency F e from the condition (i): Fe~2FM=0.3 Hz. 
To raise the accuracy of the simulation we shall increase F e, according to (2), up to i H z. 
The weighting function h(t) is determined for all values of t, but is studied in a bounded 
interval [0, T], which distorts its spectrum and introduces a truncation error. The error 
introduced by truncating h(t) is given by 

[erf( k )] 
�9 2 - i / T  �9 1 0 0 % .  

The size of the interval T can be chosen so that outside an interval of duration T the value 
of h(t) would not exceed B % of its maximum value hmax(t): 

h (t > T) ~ 1~ % hm,~ (t). 

The weighting function h(t)has a maximum at t = k2/6. The size of the interval T for k = 6.7, 
< 1% equals 250 sec. 

To evaluate the accuracy of the simulation and to determine more accurately the obser- 
vation interval T a complex of numerical experiments was performed for different values of k. 
The experiments consisted of calculating the output ~ signal of the digital model using the 
algorith_m for sectioned convolution and comparing it with the_ output signal of the link 
exp(--k~p) at the time t = nTe. The functions i/p and I/(pVP) , characteristic for systems 
used to identify the thermophysical properties of materials, were employed at the inputs. 
The values of the output signals of the thermal link for the indicated inputs were determined, 
respectively, by the formulas 

~, (nTe) = erfc 2 ~ nT---~ ' 

~, (nTc)=2 F / rite e x p ~  (--k2/4nTe)- k erfc. (, k ) .  
2 "V'~-~e 
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As the results of the numerical experiments showed, for the input I/p the maximum deviation 
of the output signals of the digital model and the thermal link is observed initially (Table 
i). For t > 7 sec (k = 6.7) the error does not exceed 0.1%. Increasing k decreases the out- 
put signals initially and therefore extends the initial section up to i00 sec. For t > i00 
sec the error does not exceed 0.17%. For the input I(p~P) the error of the digital model is 
initially somewhat higher (.Table 2). But for t > 15 sec (k = 6.7) it does not exceed 0.2%, 
For k = 67, t = 200 sec the error does not exceed 0.22%. Graphs of the output signals of 
the thermal link and digital model for inputs I/(p~P) and i/p are represented in Fig. 3. For 
k = 6.7 the output signals of the digital model and thermal link are identical in the ob- 
servation interval [i0, i00 sec]. 

NOTATION 

p, Laplace transform parameter; 80 , quantization step for the excess temperature @iO(09 
excess temperature, 6out, is the digital signal at the input of the model, n = 0, 17 2 ~o., 

2 ~ x 
erfcx=l--erfx, erfx=~ exp(-- x~)dx is Gauss'error function. 

0 
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RECONSTRUCTION OF CAUSAL CHARACTERISTICS OF THE THERMAL CONDUCTIVITY 

PROCESS FROM THE SOLUTION OF THE COMBINED INVERSE PROBLEM 

O. M. Alifanov, S. L. Balakovskii, 
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An algorithm is suggested for solving the combined inverse problem of heat exchange 
on the basis of using uniqueness theorems. 

Methods of inverse problems of heat exchange (IPHE), substantially enhancing the 
effectiveness of studies in this region, have become widely used in analyzing heat-exchange 
processes. Among the various IPHE formulations, one can distinguish the combined methods 
[i], when one seeks simultaneously causal characteristics of various types. Thus, in simu- 
lating thermal processes is heat-protection materials, during plasma deposition, heating, and 
a numher of other cases the necessity arises of determining the thermal conductivity coefficient 
in the high temperature region. At the same time the low measurement accuracy does not make 
it possible to obtain reliable information concerning external thermal loads and internal 
heat sources, rela~ed, for example, to chemical reaction flow in the hulk of the material 
investigated. This difficulty is overcome as a result of solving the combined IPHE, consist- 
ing of determining the coefficients of the thermal conductivity equation and the heat flux 
density at the boundary from temperature measurements at internal points of the hody. We 
note tha~ in several cases the temperatures at internal points are the only reliable source 
of information on the thermal state of the object. 
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